curve.py 3.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140
  1. import random
  2. '''
  3. 'secp256k1',
  4. p=0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f,
  5. a=0,
  6. b=7,
  7. g=(0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798,0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8),
  8. # Subgroup order.
  9. n=0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141,
  10. # Subgroup cofactor.
  11. h=1,
  12. '''
  13. # y2 = x3 + ax + b
  14. class Curve:
  15. def __init__(self, p, a, b, g, n, h):
  16. # размер конечного поля
  17. self.p = p
  18. # коэффиценты уравнения a и b
  19. self.a = a
  20. self.b = b
  21. # базовая точка
  22. self.g = g
  23. # порядок подруппы
  24. self.n = n
  25. # кофактор подгруппы
  26. self.h = h
  27. # Обратное деление по модулю p кривой
  28. def inverseMod(self, k):
  29. if k == 0:
  30. raise ZeroDivisionError('division by zero')
  31. if k < 0:
  32. # k ** -1 = p - (-k) ** -1 (mod p)
  33. return self.p - self.inverseMod(-k)
  34. # Расширенный алгоритм Евклида
  35. s, old_s = 0, 1
  36. t, old_t = 1, 0
  37. r, old_r = self.p, self.k
  38. while r != 0:
  39. quotient = old_r // r
  40. old_r, r = r, old_r - quotient * r
  41. old_s, s = s, old_s - quotient * s
  42. old_t, t = t, old_t - quotient * t
  43. gcd, x, y = old_r, old_s, old_t
  44. #assert gcd == 1
  45. #assert (k * x) % p == 1
  46. return x % self.p
  47. # Проверка расположения точки на кривой
  48. def isPointCurve(self, x, y):
  49. return (y * y - x * x * x - self.a * x - self.b) % self.p == 0
  50. def point_neg(self, x, y):
  51. """Returns -point."""
  52. #assert is_on_curve(point)
  53. #result = (x, -y % self.p)
  54. #assert is_on_curve(result)
  55. #return result
  56. return Point(
  57. x = self.x,
  58. y = -y % self.curve.p,
  59. )
  60. def point_add(point1, point2):
  61. """Returns the result of point1 + point2 according to the group law."""
  62. assert is_on_curve(point1)
  63. assert is_on_curve(point2)
  64. if point1 is None:
  65. # 0 + point2 = point2
  66. return point2
  67. if point2 is None:
  68. # point1 + 0 = point1
  69. return point1
  70. x1, y1 = point1
  71. x2, y2 = point2
  72. if x1 == x2 and y1 != y2:
  73. # point1 + (-point1) = 0
  74. return None
  75. if x1 == x2:
  76. # This is the case point1 == point2.
  77. m = (3 * x1 * x1 + curve.a) * inverse_mod(2 * y1, curve.p)
  78. else:
  79. # This is the case point1 != point2.
  80. m = (y1 - y2) * inverse_mod(x1 - x2, curve.p)
  81. x3 = m * m - x1 - x2
  82. y3 = y1 + m * (x3 - x1)
  83. result = (x3 % curve.p, -y3 % curve.p)
  84. #assert is_on_curve(result)
  85. return result
  86. def scalar_mult(k, point):
  87. """Returns k * point computed using the double and point_add algorithm."""
  88. assert is_on_curve(point)
  89. if k % curve.n == 0 or point is None:
  90. return None
  91. if k < 0:
  92. # k * point = -k * (-point)
  93. return scalar_mult(-k, point_neg(point))
  94. result = None
  95. addend = point
  96. while k:
  97. if k & 1:
  98. # Add.
  99. result = point_add(result, addend)
  100. # Double.
  101. addend = point_add(addend, addend)
  102. k >>= 1
  103. assert is_on_curve(result)
  104. return result
  105. # Keypair generation and ECDHE ################################################
  106. def make_keypair():
  107. """Generates a random private-public key pair."""
  108. private_key = random.randrange(1, curve.n)
  109. public_key = scalar_mult(private_key, curve.g)
  110. return private_key, public_key