123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140 |
- import random
- '''
- 'secp256k1',
- p=0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f,
- a=0,
- b=7,
- g=(0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798,0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8),
- # Subgroup order.
- n=0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141,
- # Subgroup cofactor.
- h=1,
- '''
- # y2 = x3 + ax + b
- class Curve:
-
- def __init__(self, p, a, b, g, n, h):
- # размер конечного поля
- self.p = p
- # коэффиценты уравнения a и b
- self.a = a
- self.b = b
- # базовая точка
- self.g = g
- # порядок подруппы
- self.n = n
- # кофактор подгруппы
- self.h = h
- # Обратное деление по модулю p кривой
- def inverseMod(self, k):
- if k == 0:
- raise ZeroDivisionError('division by zero')
- if k < 0:
- # k ** -1 = p - (-k) ** -1 (mod p)
- return self.p - self.inverseMod(-k)
- # Расширенный алгоритм Евклида
- s, old_s = 0, 1
- t, old_t = 1, 0
- r, old_r = self.p, self.k
- while r != 0:
- quotient = old_r // r
- old_r, r = r, old_r - quotient * r
- old_s, s = s, old_s - quotient * s
- old_t, t = t, old_t - quotient * t
- gcd, x, y = old_r, old_s, old_t
- #assert gcd == 1
- #assert (k * x) % p == 1
- return x % self.p
- # Проверка расположения точки на кривой
- def isPointCurve(self, x, y):
- return (y * y - x * x * x - self.a * x - self.b) % self.p == 0
-
- def point_neg(self, x, y):
- """Returns -point."""
- #assert is_on_curve(point)
- #result = (x, -y % self.p)
- #assert is_on_curve(result)
- #return result
- return Point(
- x = self.x,
- y = -y % self.curve.p,
- )
- def point_add(point1, point2):
- """Returns the result of point1 + point2 according to the group law."""
- assert is_on_curve(point1)
- assert is_on_curve(point2)
- if point1 is None:
- # 0 + point2 = point2
- return point2
- if point2 is None:
- # point1 + 0 = point1
- return point1
- x1, y1 = point1
- x2, y2 = point2
- if x1 == x2 and y1 != y2:
- # point1 + (-point1) = 0
- return None
- if x1 == x2:
- # This is the case point1 == point2.
- m = (3 * x1 * x1 + curve.a) * inverse_mod(2 * y1, curve.p)
- else:
- # This is the case point1 != point2.
- m = (y1 - y2) * inverse_mod(x1 - x2, curve.p)
- x3 = m * m - x1 - x2
- y3 = y1 + m * (x3 - x1)
- result = (x3 % curve.p, -y3 % curve.p)
- #assert is_on_curve(result)
- return result
- def scalar_mult(k, point):
- """Returns k * point computed using the double and point_add algorithm."""
- assert is_on_curve(point)
- if k % curve.n == 0 or point is None:
- return None
- if k < 0:
- # k * point = -k * (-point)
- return scalar_mult(-k, point_neg(point))
- result = None
- addend = point
- while k:
- if k & 1:
- # Add.
- result = point_add(result, addend)
- # Double.
- addend = point_add(addend, addend)
- k >>= 1
- assert is_on_curve(result)
- return result
- # Keypair generation and ECDHE ################################################
- def make_keypair():
- """Generates a random private-public key pair."""
- private_key = random.randrange(1, curve.n)
- public_key = scalar_mult(private_key, curve.g)
- return private_key, public_key
|