import random ''' 'secp256k1', p=0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f, a=0, b=7, g=(0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798,0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8), # Subgroup order. n=0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141, # Subgroup cofactor. h=1, ''' # y2 = x3 + ax + b class Curve: def __init__(self, p, a, b, g, n, h): # размер конечного поля self.p = p # коэффиценты уравнения a и b self.a = a self.b = b # базовая точка self.g = g # порядок подруппы self.n = n # кофактор подгруппы self.h = h # Обратное деление по модулю p кривой def inverseMod(self, k): if k == 0: raise ZeroDivisionError('division by zero') if k < 0: # k ** -1 = p - (-k) ** -1 (mod p) return self.p - self.inverseMod(-k) # Расширенный алгоритм Евклида s, old_s = 0, 1 t, old_t = 1, 0 r, old_r = self.p, self.k while r != 0: quotient = old_r // r old_r, r = r, old_r - quotient * r old_s, s = s, old_s - quotient * s old_t, t = t, old_t - quotient * t gcd, x, y = old_r, old_s, old_t #assert gcd == 1 #assert (k * x) % p == 1 return x % self.p # Проверка расположения точки на кривой def isPointCurve(self, x, y): return (y * y - x * x * x - self.a * x - self.b) % self.p == 0 def point_neg(self, x, y): """Returns -point.""" #assert is_on_curve(point) #result = (x, -y % self.p) #assert is_on_curve(result) #return result return Point( x = self.x, y = -y % self.curve.p, ) def point_add(point1, point2): """Returns the result of point1 + point2 according to the group law.""" assert is_on_curve(point1) assert is_on_curve(point2) if point1 is None: # 0 + point2 = point2 return point2 if point2 is None: # point1 + 0 = point1 return point1 x1, y1 = point1 x2, y2 = point2 if x1 == x2 and y1 != y2: # point1 + (-point1) = 0 return None if x1 == x2: # This is the case point1 == point2. m = (3 * x1 * x1 + curve.a) * inverse_mod(2 * y1, curve.p) else: # This is the case point1 != point2. m = (y1 - y2) * inverse_mod(x1 - x2, curve.p) x3 = m * m - x1 - x2 y3 = y1 + m * (x3 - x1) result = (x3 % curve.p, -y3 % curve.p) #assert is_on_curve(result) return result def scalar_mult(k, point): """Returns k * point computed using the double and point_add algorithm.""" assert is_on_curve(point) if k % curve.n == 0 or point is None: return None if k < 0: # k * point = -k * (-point) return scalar_mult(-k, point_neg(point)) result = None addend = point while k: if k & 1: # Add. result = point_add(result, addend) # Double. addend = point_add(addend, addend) k >>= 1 assert is_on_curve(result) return result # Keypair generation and ECDHE ################################################ def make_keypair(): """Generates a random private-public key pair.""" private_key = random.randrange(1, curve.n) public_key = scalar_mult(private_key, curve.g) return private_key, public_key