jrFlint il y a 2 ans
Parent
commit
a1f8d5fd22
2 fichiers modifiés avec 177 ajouts et 1 suppressions
  1. 112 1
      curve.py
  2. 65 0
      point.py

+ 112 - 1
curve.py

@@ -26,4 +26,115 @@ class Curve:
         # порядок подруппы
         self.n = n
         # кофактор подгруппы
-        self.h = h
+        self.h = h
+
+    # Обратное деление по модулю p кривой
+    def inverseMod(self, k):
+        if k == 0:
+            raise ZeroDivisionError('division by zero')
+        if k < 0:
+            # k ** -1 = p - (-k) ** -1  (mod p)
+            return self.p - self.inverseMod(-k)
+        # Расширенный алгоритм Евклида
+        s, old_s = 0, 1
+        t, old_t = 1, 0
+        r, old_r = self.p, self.k
+        while r != 0:
+            quotient = old_r // r
+            old_r, r = r, old_r - quotient * r
+            old_s, s = s, old_s - quotient * s
+            old_t, t = t, old_t - quotient * t
+        gcd, x, y = old_r, old_s, old_t
+        #assert gcd == 1
+        #assert (k * x) % p == 1
+        return x % self.p
+
+
+    # Проверка расположения точки на кривой
+    def isPointCurve(self, x, y):
+        return (y * y - x * x * x - self.a * x - self.b) % self.p == 0
+
+    
+    def point_neg(self, x, y):
+        """Returns -point."""
+        #assert is_on_curve(point)
+        #result = (x, -y % self.p)
+        #assert is_on_curve(result)
+        #return result
+        return Point(
+            x = self.x,
+            y = -y % self.curve.p,
+        )
+
+
+    def point_add(point1, point2):
+        """Returns the result of point1 + point2 according to the group law."""
+        assert is_on_curve(point1)
+        assert is_on_curve(point2)
+
+        if point1 is None:
+            # 0 + point2 = point2
+            return point2
+        if point2 is None:
+            # point1 + 0 = point1
+            return point1
+
+        x1, y1 = point1
+        x2, y2 = point2
+
+        if x1 == x2 and y1 != y2:
+            # point1 + (-point1) = 0
+            return None
+
+        if x1 == x2:
+            # This is the case point1 == point2.
+            m = (3 * x1 * x1 + curve.a) * inverse_mod(2 * y1, curve.p)
+        else:
+            # This is the case point1 != point2.
+            m = (y1 - y2) * inverse_mod(x1 - x2, curve.p)
+
+        x3 = m * m - x1 - x2
+        y3 = y1 + m * (x3 - x1)
+        result = (x3 % curve.p, -y3 % curve.p)
+    #assert is_on_curve(result)
+
+    return result
+
+
+def scalar_mult(k, point):
+    """Returns k * point computed using the double and point_add algorithm."""
+    assert is_on_curve(point)
+
+    if k % curve.n == 0 or point is None:
+        return None
+
+    if k < 0:
+        # k * point = -k * (-point)
+        return scalar_mult(-k, point_neg(point))
+
+    result = None
+    addend = point
+
+    while k:
+        if k & 1:
+            # Add.
+            result = point_add(result, addend)
+
+        # Double.
+        addend = point_add(addend, addend)
+
+        k >>= 1
+
+    assert is_on_curve(result)
+
+    return result
+
+
+# Keypair generation and ECDHE ################################################
+
+def make_keypair():
+    """Generates a random private-public key pair."""
+    private_key = random.randrange(1, curve.n)
+    public_key = scalar_mult(private_key, curve.g)
+
+    return private_key, public_key

+ 65 - 0
point.py

@@ -0,0 +1,65 @@
+
+class Point:
+
+    def __init__(self, x, y, curve):
+        self.x = x
+        self.y = y
+        self.curve = curve
+
+    def isNone(self):
+        return self.x is None or self.y is None or self.curve is None
+
+    def coords(self):
+        return self.x, self.y
+
+    # Вычисление наклона прямой, проходящей через 2 точки эллиптической кривой
+    def getIncline(self, point):
+        m = 0
+        cur = self.curve
+        x1, y1 = self.coords()
+        x2, y2 = point.coords()
+        if self.x == point.x:
+            # точки равны.
+            c = self.curve
+            m = (3 * x1 * x1 + cur.a) * cur.inverseMod(2 * y1, curve.p)
+        else:
+            # точки не равны
+            m = (y1 - y2) * cur.inverseMod(x1 - x2, cur.p)
+        return m
+
+    # Сложение
+    def __add__(self, point):
+        #assert is_on_curve(point1)
+        #assert is_on_curve(point2)
+        if self.isNone():
+            return point
+        if point.isNone():
+            return self
+        if self.x == point.x and self.y != point.y:
+            # p + (-p) = 0, симметричная точка
+            return Point()
+        # вычисление наклона прямой, прходящей через 2 точки
+        m = self.getIncline(point)
+        # вычисление результирующих координат
+        rx = m * m - self.x - point.x
+        ry = self.y + m * (rx - self.x)
+        return Point(
+            curve = self.curve,
+            x = rx % self.curve.p,
+            y = -ry % self.curve.p,
+        )
+
+    # Унарный -
+    def __neg__(self):
+        return Point(
+            curve = self.curve,
+            x = self.x,
+            y = -self.y % curve.p,
+        )
+
+    # Сравнение
+    def __eq__(self, point):
+        # Точки считаются равны при совпадении по оси x
+        return self.x == point.x
+
+