|
@@ -26,4 +26,115 @@ class Curve:
|
|
|
# порядок подруппы
|
|
|
self.n = n
|
|
|
# кофактор подгруппы
|
|
|
- self.h = h
|
|
|
+ self.h = h
|
|
|
+
|
|
|
+ # Обратное деление по модулю p кривой
|
|
|
+ def inverseMod(self, k):
|
|
|
+ if k == 0:
|
|
|
+ raise ZeroDivisionError('division by zero')
|
|
|
+ if k < 0:
|
|
|
+ # k ** -1 = p - (-k) ** -1 (mod p)
|
|
|
+ return self.p - self.inverseMod(-k)
|
|
|
+ # Расширенный алгоритм Евклида
|
|
|
+ s, old_s = 0, 1
|
|
|
+ t, old_t = 1, 0
|
|
|
+ r, old_r = self.p, self.k
|
|
|
+ while r != 0:
|
|
|
+ quotient = old_r // r
|
|
|
+ old_r, r = r, old_r - quotient * r
|
|
|
+ old_s, s = s, old_s - quotient * s
|
|
|
+ old_t, t = t, old_t - quotient * t
|
|
|
+ gcd, x, y = old_r, old_s, old_t
|
|
|
+ #assert gcd == 1
|
|
|
+ #assert (k * x) % p == 1
|
|
|
+ return x % self.p
|
|
|
+
|
|
|
+
|
|
|
+ # Проверка расположения точки на кривой
|
|
|
+ def isPointCurve(self, x, y):
|
|
|
+ return (y * y - x * x * x - self.a * x - self.b) % self.p == 0
|
|
|
+
|
|
|
+
|
|
|
+ def point_neg(self, x, y):
|
|
|
+ """Returns -point."""
|
|
|
+ #assert is_on_curve(point)
|
|
|
+ #result = (x, -y % self.p)
|
|
|
+ #assert is_on_curve(result)
|
|
|
+ #return result
|
|
|
+ return Point(
|
|
|
+ x = self.x,
|
|
|
+ y = -y % self.curve.p,
|
|
|
+ )
|
|
|
+
|
|
|
+
|
|
|
+ def point_add(point1, point2):
|
|
|
+ """Returns the result of point1 + point2 according to the group law."""
|
|
|
+ assert is_on_curve(point1)
|
|
|
+ assert is_on_curve(point2)
|
|
|
+
|
|
|
+ if point1 is None:
|
|
|
+ # 0 + point2 = point2
|
|
|
+ return point2
|
|
|
+ if point2 is None:
|
|
|
+ # point1 + 0 = point1
|
|
|
+ return point1
|
|
|
+
|
|
|
+ x1, y1 = point1
|
|
|
+ x2, y2 = point2
|
|
|
+
|
|
|
+ if x1 == x2 and y1 != y2:
|
|
|
+ # point1 + (-point1) = 0
|
|
|
+ return None
|
|
|
+
|
|
|
+ if x1 == x2:
|
|
|
+ # This is the case point1 == point2.
|
|
|
+ m = (3 * x1 * x1 + curve.a) * inverse_mod(2 * y1, curve.p)
|
|
|
+ else:
|
|
|
+ # This is the case point1 != point2.
|
|
|
+ m = (y1 - y2) * inverse_mod(x1 - x2, curve.p)
|
|
|
+
|
|
|
+ x3 = m * m - x1 - x2
|
|
|
+ y3 = y1 + m * (x3 - x1)
|
|
|
+ result = (x3 % curve.p, -y3 % curve.p)
|
|
|
+ #assert is_on_curve(result)
|
|
|
+
|
|
|
+ return result
|
|
|
+
|
|
|
+
|
|
|
+def scalar_mult(k, point):
|
|
|
+ """Returns k * point computed using the double and point_add algorithm."""
|
|
|
+ assert is_on_curve(point)
|
|
|
+
|
|
|
+ if k % curve.n == 0 or point is None:
|
|
|
+ return None
|
|
|
+
|
|
|
+ if k < 0:
|
|
|
+ # k * point = -k * (-point)
|
|
|
+ return scalar_mult(-k, point_neg(point))
|
|
|
+
|
|
|
+ result = None
|
|
|
+ addend = point
|
|
|
+
|
|
|
+ while k:
|
|
|
+ if k & 1:
|
|
|
+ # Add.
|
|
|
+ result = point_add(result, addend)
|
|
|
+
|
|
|
+ # Double.
|
|
|
+ addend = point_add(addend, addend)
|
|
|
+
|
|
|
+ k >>= 1
|
|
|
+
|
|
|
+ assert is_on_curve(result)
|
|
|
+
|
|
|
+ return result
|
|
|
+
|
|
|
+
|
|
|
+# Keypair generation and ECDHE ################################################
|
|
|
+
|
|
|
+def make_keypair():
|
|
|
+ """Generates a random private-public key pair."""
|
|
|
+ private_key = random.randrange(1, curve.n)
|
|
|
+ public_key = scalar_mult(private_key, curve.g)
|
|
|
+
|
|
|
+ return private_key, public_key
|