jrFlint il y a 2 ans
Parent
commit
8b2c173d98
2 fichiers modifiés avec 78 ajouts et 93 suppressions
  1. 48 85
      curve.py
  2. 30 8
      point.py

+ 48 - 85
curve.py

@@ -1,4 +1,5 @@
 import random
+from point import Point
 
 '''
 'secp256k1',
@@ -15,30 +16,41 @@ h=1,
 # y2 = x3 + ax + b
 class Curve:
     
-    def __init__(self, p, a, b, g, n, h):
+    def __init__(self, p, a, b, gx, gy, n, h):
         # размер конечного поля
         self.p = p
         # коэффиценты уравнения a и b
         self.a = a
         self.b = b
         # базовая точка
-        self.g = g
+        self.g = Point(
+            curve = self,
+            x = gx,
+            y = gy
+        )
         # порядок подруппы
         self.n = n
         # кофактор подгруппы
         self.h = h
 
+    def point(self, x, y):
+        return Point(
+            curve = self,
+            x = x,
+            y = y
+        )
+
     # Обратное деление по модулю p кривой
-    def inverseMod(self, k):
+    def inverseMod(self, k, point):
         if k == 0:
             raise ZeroDivisionError('division by zero')
         if k < 0:
             # k ** -1 = p - (-k) ** -1  (mod p)
-            return self.p - self.inverseMod(-k)
+            return point - self.inverseMod(-k, point)
         # Расширенный алгоритм Евклида
         s, old_s = 0, 1
         t, old_t = 1, 0
-        r, old_r = self.p, self.k
+        r, old_r = point, k
         while r != 0:
             quotient = old_r // r
             old_r, r = r, old_r - quotient * r
@@ -47,94 +59,45 @@ class Curve:
         gcd, x, y = old_r, old_s, old_t
         #assert gcd == 1
         #assert (k * x) % p == 1
-        return x % self.p
-
-
-    # Проверка расположения точки на кривой
-    def isPointCurve(self, x, y):
-        return (y * y - x * x * x - self.a * x - self.b) % self.p == 0
-
-    
-    def point_neg(self, x, y):
-        """Returns -point."""
-        #assert is_on_curve(point)
-        #result = (x, -y % self.p)
-        #assert is_on_curve(result)
-        #return result
-        return Point(
-            x = self.x,
-            y = -y % self.curve.p,
-        )
-
-
-    def point_add(point1, point2):
-        """Returns the result of point1 + point2 according to the group law."""
-        assert is_on_curve(point1)
-        assert is_on_curve(point2)
-
-        if point1 is None:
-            # 0 + point2 = point2
-            return point2
-        if point2 is None:
-            # point1 + 0 = point1
-            return point1
-
-        x1, y1 = point1
-        x2, y2 = point2
-
-        if x1 == x2 and y1 != y2:
-            # point1 + (-point1) = 0
-            return None
-
-        if x1 == x2:
-            # This is the case point1 == point2.
-            m = (3 * x1 * x1 + curve.a) * inverse_mod(2 * y1, curve.p)
-        else:
-            # This is the case point1 != point2.
-            m = (y1 - y2) * inverse_mod(x1 - x2, curve.p)
-
-        x3 = m * m - x1 - x2
-        y3 = y1 + m * (x3 - x1)
-        result = (x3 % curve.p, -y3 % curve.p)
-    #assert is_on_curve(result)
-
-    return result
-
-
-def scalar_mult(k, point):
-    """Returns k * point computed using the double and point_add algorithm."""
-    assert is_on_curve(point)
-
-    if k % curve.n == 0 or point is None:
-        return None
+        return x % point
 
-    if k < 0:
-        # k * point = -k * (-point)
-        return scalar_mult(-k, point_neg(point))
+    def randomKeypair(self):
+        keyPriv = random.randrange(1, self.n)
+        keyPub = self.g * keyPriv
+        return keyPriv, keyPub
 
-    result = None
-    addend = point
+    def keyPub(self, keyPriv):
+        return self.g * keyPriv
 
-    while k:
-        if k & 1:
-            # Add.
-            result = point_add(result, addend)
+#################################
 
-        # Double.
-        addend = point_add(addend, addend)
+c = Curve(
+    p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f,
+    a = 0,
+    b = 7,
+    gx = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798,
+    gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8,
+    n = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141,
+    h = 1
+)
 
-        k >>= 1
+# 0x774ae7f858a9411e5ef4246b70c65aac5649980be5c17891bbec17895da008cb, 
+# 0xd984a032eb6b5e190243dd56d7b7b365372db1e2dff9d6a8301d74c9c953c61b
+#pub = c.keyPub(11)
 
-    assert is_on_curve(result)
+#print(pub.show())
 
-    return result
+#exit(0)
 
+aPriv, aPub = c.randomKeypair()
+bPriv, bPub = c.randomKeypair()
 
-# Keypair generation and ECDHE ################################################
+print(hex(aPriv))
+print(aPub.show())
 
-def make_keypair():
-    """Generates a random private-public key pair."""
-    private_key = random.randrange(1, curve.n)
-    public_key = scalar_mult(private_key, curve.g)
+#aS = scalar_mult(alice_private_key, bob_public_key)
+aS = bPub * aPriv
+bS = aPub * bPriv
 
-    return private_key, public_key
+print(aS.show())
+print(bS.show())

+ 30 - 8
point.py

@@ -1,11 +1,13 @@
 
 class Point:
 
+    # Конструктор
     def __init__(self, x, y, curve):
         self.curve = curve
         self.x = x
         self.y = y
 
+    # Копирование точки
     def copy(self):
         return Point(
             curve = self.curve,
@@ -13,6 +15,17 @@ class Point:
             y = self.y,
         )
 
+    def show(self):
+        if self.isNone():
+            return "None"
+        return "(0x{:x}, 0x{:x})".format(self.x, self.y)
+
+    def showCoords(self):
+        if self.isNone():
+            return "None"
+        return "({}, {})".format(self.x, self.y)
+
+    # Инициализация новой точки по координатам
     def initXY(self, x, y):
         return Point(
             curve = self.curve,
@@ -20,17 +33,29 @@ class Point:
             y = y
         )
 
+    # Иницуиализация новой точки с неопределенными координатами
     def pointNull(self):
         return Point(
+            x = None,
+            y = None,
             curve = self.curve
         )
 
+    # Проверка, определена ли точка.
+    # ТОчка считается неопределенной, если одна из координат или кривая не определены
     def isNone(self):
         return self.x is None or self.y is None or self.curve is None
 
+    # возвращает координаты x и y
     def coords(self):
         return self.x, self.y
 
+    # Проверка пренадлежности точки к кривой
+    def isInCurve(self):
+        x, y = self.coords()
+        c = self.curve
+        return (y * y - x * x * x - c.a * x - c.b) % c.p == 0
+
     # Вычисление наклона прямой, проходящей через 2 точки эллиптической кривой
     def getIncline(self, point):
         m = 0
@@ -40,7 +65,7 @@ class Point:
         if self.x == point.x:
             # точки равны.
             c = self.curve
-            m = (3 * x1 * x1 + cur.a) * cur.inverseMod(2 * y1, curve.p)
+            m = (3 * x1 * x1 + cur.a) * cur.inverseMod(2 * y1, cur.p)
         else:
             # точки не равны
             m = (y1 - y2) * cur.inverseMod(x1 - x2, cur.p)
@@ -82,19 +107,16 @@ class Point:
     # Умножение
     def __mul__(self, k):
         #assert is_on_curve(point)
-        if self.isNone() or self.curve.n == 0:
-            return Point()
+        if self.isNone() or k % self.curve.n == 0:
+            return s.pointNull()
 
         if k < 0:
             # k * point = -k * (-point)
             return -self * -k
 
-        res = Point(
-            x = 0,
-            y = 0,
-            curve = self.curve
-        )
+        res = self.pointNull()
         addend = self.copy()
+
         while k:
             if k & 1:
                 # Add.